Learning Classification Rules Using Lattices ( Extended
نویسنده
چکیده
This paper presents a novel induction algorithm, Rulearner, which induces classification rules using a Galois lattice as an explicit map through the search space of rules. The Rulearner system is shown to compare favorably with commonly used symbolic learning methods which use heuristics rather than an explicit map to guide their search through the rule space. Furthermore, our learning system is shown to be robust in the presence of noisy data. The Rulearner system is also capable of learning both decision lists and unordered rule sets allowing for comparisons of these different learning paradigms within the same algorithmic framework.
منابع مشابه
Learning Classification Rules Using Lattices
This paper presents a novel induction algorithm, Rulearner, which induces classification rules using a Galois lattice as an explicit map through the search space of rules. The construction of lattices from data is initially discussed and the use of these structures in inducing classification rules is examined. The Rulearner system is shown to compare favorably with commonly used symbolic learni...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملSemi-supervised learning on closed set lattices
We propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label ranker for mixed-type data containin...
متن کامل